Application of Geodesy for Meteorological Multi-Instrument Campaigns *Freya Ione Addison¹, Ryan Reynolds Neely¹, Jonathan Crosier⁵, Chris Westbrook⁶, Stephanie Evan⁸, Jérome Briode⁸, Chris Walden^{4,3}, Axel Wellpott², Graeme Nott², Darcy Ladd^{3,4}, James Dorsey⁵, Mark Fortescue³, Steven Abel⁷, Steven Best⁷, Sebastian O'Shea⁵, Chris Reed² 1. University of Leeds, 2. FAAM, 3. Chilbolton Observatory, 4. STFC, 5. University of Manchester, 6. University of Reading, 7. Met Office, 8. University of Réunion Here we present the methodology for the application of geodesy in the collocation of observations made between meteorological radars and atmospheric research aircraft and balloon-based platforms. The case studies used in this study are from two campaigns: PICASSO (Parameterising Ice Clouds using Airborne obServationS and triple-frequency dOppler radar) project based in the south of England and CONCIRTO (CONvection, CIRrus and tropical Tropopause layer over the Indian Ocean) based at the Maido Observatory in La Reunion. Previous methods have relied on statistics to make up for observations that are not collocated, which gives rise to further uncertainties. This analysis showcases how geodesy can be implemented prior to observations and during post analysis to provide the best observations, improving collocation by a factor of 10^2 . Keywords: Geodesics, Precision Uncertainty, Collocation, High-Resolution, Observations, Software Package