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1. MOTIVATION: UNSATISFACTORY BENEFITS 
 

Radar is our best instrument to monitor and study 
storms. Data assimilation is our best approach to 
combine information from different sources. 
Numerical weather prediction is our best forecasting 
tool. Given these, one would expect that the 
assimilation of radar data into convective-scale 
models should provide the best storm forecasts. Yet, 
for example for precipitation forecasts, simple 
extrapolation of rainfall patterns often beat numerical 
forecasting with radar data assimilation for a couple of 
hours (Fig. 1). 
 

 
FIG. 1. Skill of the forecast of precipitation patterns 
made by three systems: the storm-scale ensemble 
forecasting system run by the Center for the Analysis 
and Prediction of Storms during NOAA’s 2008 
Hazardous Weather Testbed (HWT) Spring 
Experiment (Xue et al. 2008) without radar data 
assimilation (in cyan), the same system with radar 
data assimilation (in orange), and the McGill 
Algorithm of Precipitation Forecasting by Lagrangian 
Extrapolation (MAPLE; Germann and Zawadzki 2002; 
in black). Note the rapid initial decrease in skill of the 
NWP forecast with radar data assimilation. Image 
courtesy of Madalina Surcel based on the work of 
Surcel et al. (2015). 
 
 While there is no denying that radar data 
assimilation helps improve NWP forecasts (e.g., 
Dowell et al. 2011, Jones et al. 2015, and references 
therein), if these forecasts do not perform significantly  
better than extrapolation of echo movement, they are 
not as good as one should expect. If we examine 
forecast performance, we note that a) the skill of NWP 
aided  by  radar  data  assimilation  often  drops  very  
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rapidly in the first forecast hour (e.g., Fig. 1, or Fig. 10 
of Aksoy et al. 2010) and/or does not have great skill 
immediately after assimilation (e.g., Fig. 15 of 
Mandapaka et al. 2014 or Fig. 8 of Supinie et al. 
2017), and b) the assimilation of radar data yields 
significant gains for much shorter periods (e.g., about 
two hours) than that of other instruments (e.g., six 
hours for surface observations; L. Fillion, 2017, 
private communication). 
 This very rapid drop in skill suggests that radar 
data assimilation may not be as successful as that of 
other datasets. This is problematic given that we 
intend to largely rely on radar data assimilation to 
warn for storms on forecasts using numerical weather 
forecasting approaches (e.g., Stensrud et al. 2009, 
2013). Understanding what makes radar data 
assimilation difficult is hence critical: What is 
fundamentally and/or practically different between the 
data from radar and that of other sources that may 
affect their assimilation, particularly in the context of 
convective-scale forecasting? Note that this question 
is different and complementary to the more traditional 
“what makes convective-scale assimilation difficult” 
for which we already have many answers (e.g., Yano 
et al. 2018). Since no simple experiment can be 
devised to answer the question at hand, a reasoning-
based approach is adopted. The subject of our 
reflection will hence follow this axis: What could go 
wrong and why? 
 We shall accept as a starting hypothesis that data 
assimilation generally works given the existing 
evidence from its everyday use in operational forecast 
centers (e.g., Kwon et al. 2018). Given this 
hypothesis, the challenges of radar data assimilation 
must come from radar-related specificities, namely 
the context and conditions under which radar data 
assimilation is generally performed, peculiarities of 
the radar data themselves, and how radar data 
interface with the assimilation process. To understand 
what could go wrong, we must first collect the many 
puzzle pieces before we try putting them together; this 
involves documenting the characteristics of the data 
being assimilated and highlighting peculiarities that 
may cause difficulties. Issues arising from the 
interaction between these peculiarities and the 
assimilation machine will be subsequently 
investigated, sometimes numerically, sometimes 
using more qualitative reasoning, to expose the 
process by which the quality of either the analysis or 
the forecast resulting from the assimilation may be 
affected. 
 
2. CONCEPTUAL OVERVIEW OF CORRECTION-

BASED ASSIMILATION 

 

At the risk of insulting the intelligence of data 
assimilation specialists, the first step in this 
investigation requires revisiting some of the key basic 



principles behind most of the current data assimilation 
approaches. The following narrative can only be 
incomplete but is merely meant to help understand 
the rest of this contribution. Readers interested in a 
more thorough introduction to the subject of data 
assimilation should consult, among others, the lecture 
notes by Bocquet (2019) and the book by Asch et al. 
(2016). 
 

2.1 Goal, Available Information, Process 
 

Data assimilation refers to techniques designed to 
combine optimally the information available about the 
state of the atmosphere at a specific time. The result 
of that optimal combination, referred to as the 
analysis, generally serves as the initial conditions for 
numerical weather forecasting. The information 
available to compute this analysis generally originates 
from two sources (Fig. 2): 
 

 
FIG. 2. Flowchart illustrating the context within which 
assimilation is performed. Adapted from Fabry (2015). 
 
1)  Background, or a-priori, information on the state of 

the atmosphere. This generally comes from a 
forecast made in the past but valid at the time of 
interest. It has the advantage of having 
information about all the atmospheric fields 
needed for a forecast, but this information has 
errors that need to be corrected; 

2)  Observations of the atmosphere made at or near 
the time of interest. These observations will be too 
sparse both in coverage and in atmospheric state 
variables to generate an analysis on their own, but 
they can be used to correct the errors of the 
background. One should not forget that these 
observations also have errors, either of 
measurement or of representativeness (e.g., the 
mismatch between the sampling volume of the 
observation and the volume represented by the 
analysis grid-point). 
Because the background and observations are 

imperfect, the analysis cannot perfectly respect both 
sets of constraints. It is hence the task of the data 
assimilation system to generate the analysis that best 
combines the information provided by both sources of 
data. Most common assimilation approaches used 
nowadays such as those based on Kalman filters or 
variational approaches are “correction-based”: The 
assimilation system computes the new analysis by 
adding corrections to the background to better respect 
the constraints provided by observations (the change 

to the background made by the assimilation system, 
or the difference between the analysis and the 
background, is referred to as the innovation). It attains 
this goal by simultaneously: 
1) Minimizing the mismatch between the analysis 

and the background, accounting for background 
errors; 

2) Minimizing the mismatch between actual 
observations and expected observations 
simulated using the analysis, accounting for the 
errors of observation, measurement simulation, 
and observation representativeness; 

3) Spreading the innovation induced by observations 
from the locations and variables where the 
mismatch minimization occurred to other locations 
and variables. 

 

2.2 Error Dependencies to the Rescue 
 

The real power and magic of correction-based 
data assimilation results from the dependencies 
between errors, as it is what allows the assimilation 
system to spread the information coming from new 
measurements. Let us illustrate this process by 
analyzing the assimilation of a single measurement. 

Consider a forecast for temperature such as Fig. 3 
that we shall use as the background in an assimilation 
thought experiment. The expected temperature for 
Ocean City is 32°C, with a background error of ±1.4°C 
(not shown). We have a measurement at 29°C, with 
an observation error of ±1°C. Given the uncertainties 
on each, the optimum blend of these two constraints 
(32±1.4 and 29±1) is 30°C. The innovation on 
temperature at Ocean City resulting from the 
assimilated measurement is hence 30−32=−2°C. The 
analysis temperature at Ocean City is now computed 
(and its new uncertainty can also be estimated). 

Since we lowered the temperature at Ocean City, 
should we change temperatures elsewhere? Consider 
Dover. Common sense suggests that it is very likely 
that the reason we made a mistake forecasting the 
temperature in Ocean City also applies in Dover; 
hence, it is reasonable to assume that we should also 
lower the temperature in Dover. By how much? Given 
the short distance between the two cities, the errors in 
their forecast are probably highly correlated and 
similar in magnitude; on that basis, we should 
probably change Dover’s temperature by, say, 
−1.5°C, the exact value depending on the covariance 
between the two errors. How about New York? It is 
also possible that the reason we made a mistake 
forecasting the temperature in Ocean City also 
applies in New York, but not as likely as in Dover. 
Since there is a greater than 50% chance that the 
temperature in New York is also too high, we should 
slightly lower the temperature in New York too. For 
Chicago however, the processes that led to a 
temperature error in Ocean City are probably 
irrelevant there, and we have no reason to change 
temperatures that far from Ocean City. 

The next question that arises is: What were the 
causes of this forecast error in Ocean City, and what 
have been their consequences? Causes may include 
increased cloudiness, or a stronger sea breeze from



 
FIG. 3.  Example of a surface temperature forecast (courtesy of NOAA) to be used as a background to assimilate a 
measurement at Ocean City. 

the east; consequences may be a thinner 
planetary boundary layer, and increased surface 
humidity in it as a result. We should hence probably 
adjust those too. Suddenly, because we know that the 
surface temperature in Ocean City is wrong, we can 
modify many fields, and not only in Ocean City. This 
is only possible because errors in one quantity at one 
place, here the temperature at Ocean City, are 
physically or statistically linked with errors in other 
quantities or in other locations. Note that depending 
on the expected cause of forecast error, the sphere of 
influence of a correction will vary in size: If the likely 
cause of error is due to synoptic-scale processes, a 
single measurement can correct fields over large 
areas; if that cause is due to a localized phenomenon 
(e.g., convection), that sphere of influence will be 
more limited. 

Such dependencies between errors are what 
allow correction-based data assimilation systems to 
correct much of the background with a relatively small 
number of incomplete observations and obtain a new 
analysis. Often, these error dependencies are 
assumed to be linear in variance, i.e.,  

����� � ����	
�� � �
��
�������� , (1) 

with � � ����������, H	���	 !"#$%
!&	'�%  ,(2) 

where var is a state variable of model state x at one 
location, H(x) is the simulated measurement given a 
model in state x, σvar and σH(x) are the expected 
uncertainties on var and on H(x), and correl[var,H(x)] 
is the linear correlation between var and H(x) across 
possible atmospheric states, a quantity either 
assumed or estimated, for example from an ensemble 

of backgrounds. If one knows σvar, σH(x) and 
correl(var,H(x)), one can propagate an innovation 
computed for each observation y into var using ∆���	�
�)* + ,-./�012�3
��45, and have var benefit from the 
reduction in uncertainty on H(x) via 
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Simplifying to the extreme, existing correction-
based assimilation approaches use the same basis 
for spreading the innovation; the primary difference 
between them lies in the assumptions, approaches 
and algorithms used to estimate σvar, σH(x) and 
correl(var,H(x)) for every combination of state 
variables and observations. 
 
2.3 The Complex Nature of Error Dependencies 
 

Let us continue our assimilation experiment of the 
temperature in Ocean City. We have just received 
shocking news: The actual temperature is 21°C, 11°C 
cooler than expected. Once we confirm that this is not 
an erroneous measurement, how do we use it to 
correct other fields? Our previous assumption that the 
temperature error was probably due to increased 
cloudiness or a stronger sea breeze becomes 
doubtful. The most likely process that can lead to 
such a temperature error is an unpredicted storm 
outflow. Because the phenomena that cause such 
large errors are different from those that cause small 
ones, our ability to project a correction on 
temperatures elsewhere and on other fields will also 
change: How far does the storm outflow affecting 



Ocean City go? Probably not to Dover, and certainly 
not to New York, unless they are themselves affected 
by different storm outflows. However, the atmosphere 
overall appears to be more unstable than expected as 
it can support unanticipated storms; but at any one 
place, the surface temperature could be either higher 
or lower depending whether that location is under the 
influence of a storm outflow or not. We hence have 
learned something important, that the atmosphere is 
more unstable, but how to best use that information is 
not clear. In parallel, up to where and in what direction 
do we extend the storm outflow beyond Ocean City? 
That could depend on the wind simultaneously 
measured in Ocean City: If it has a much stronger 
component than expected from a specific direction, 
say the west, the center of the outflow pattern and the 
associated storm are probably in that direction. 
Hence, where the corrections get applied could also 
depend on the magnitude of some measured 
property. 

What this illustrates is that the magnitude of the 
mismatch between expected and real observations 
can also shape how any correction should be applied 
for optimal results. Since small perturbations in one 
atmospheric property generally cause a small linear 
response on other properties, the assumption of 
linearly-related errors works best under such 
situations. Large mismatches imply a vastly different 
atmospheric state, one where higher-order error 
terms become significant and where error linearity 
breaks down. These generally occur when the 
evolution of either the real atmosphere or the model 
state is determined by an atmospheric instability but 
not the other. Paradoxically, because major 
instabilities develop in specific ways that have been 
well documented, if one can extract the proper 
information by combining available data, one might 
make more appropriate choices on where and how to 
correct atmospheric properties. 
 

3. CONTEXT OF ASSIMILATION AND NATURE 

OF DATA 

 

The assimilation algorithm operates on data that 
have specific characteristics and error properties. Let 
us first focus on the characteristics of the background 
information and of the data at the meso- and 
convective scales where radar data assimilation is 
generally being performed. 

 
3.1 Quality of A-Priori Information 

 
Many mesoscale and convective-scale 

assimilation efforts start with background information 
originating from a global model analysis. These 
analyses are already based on the assimilation of 
data from a wide range of instruments. Smaller-scale 
data assimilation systems then take this background 
and add unused denser data such as from radars, 
satellite imagers, and in-situ measurements from 
aircrafts and surface stations (e.g., Benjamin et al. 
2016). 

What is the uncertainty of the global analysis used 
as background? This is not well known, especially at 
the smaller scales relevant to convective storms. To 

get a first order estimate on that uncertainty, we 
chose to look at the mismatch between the analyses 
of the control member of ensemble forecast systems 
from many global prediction centers: If all analyses 
from control members are similar, there is a good 
chance they are close to accurate; if they disagree, 
most must be wrong. On that basis, the average 
difference between these analyses likely represents a 
lower-bound estimate on their expected uncertainty. 

Using data from The International Grand Global 
Ensemble (TIGGE; Bougeault et al. 2010), the 
analyses of many global centers were compared for 
June and July 2018 in the midlatitudes of the Northern 
Hemisphere. The results of that comparison for key 
atmospheric properties shaping convective storms 
(Fig. 4) suggest that while their structure is well 
captured at scales larger than 1000 km, it is poorly 
known at scales smaller than 500 km in summer, 
largely irrespective of the atmospheric property 
considered. Hence, correct meso-β and meso-γ 
structures must be rebuilt from either the terrain 
forcing, the assimilation of additional information, or 
arising processes at smaller scales. Because meso-β 
atmospheric structures evolve more slowly than 
smaller entities such as individual convective cells, 
they provide skill to longer-lead time forecasts. If data 
assimilation cannot rebuild cells and larger-scale 
structures, forecasts will suffer. 

 
3.2 Data Density Considerations 

 
 What data are available to rebuild those 
structures, particularly at scales relevant to 
convection? Table 1 lists the number of 
measurements available over the typical scale (10×10 
km) and lifetime (1 h) of a storm cell. Supposing that 
independent data are available at roughly 1 km 
resolution over 20 elevation angles and are measured 
every 5 minutes, radar provides approximately 25000 
measurements of reflectivity and a somewhat smaller 
number of valid Doppler velocity measurements. 
Except for satellite data, nothing comes close to the 
density of radar information: as illustrated in Table 1, 
rare are the constraints from other data sources in the 
context of the scale and lifetime of a convective cell. 
By default, it will hence largely be the responsibility of 
radar data to correct for the missing or erroneous 
information of the background at meso-β and meso-γ 
scales. 
 But are 40000 constraints over the lifetime of a 
convective cell a little or a lot? For reference, in the 
1980s, we primarily relied on radiosonde 
measurements to forecast synoptic-scale systems. 
For a typical 2000-km storm lasting five days, the 
information used from about 40 stations (one every 
315 km in the continental US) launching radiosondes 
twice a day consisted of four measurements 
(temperature, humidity, and two wind components) at 
eight mandatory levels up to 20 kPa, or 12800 direct 
constraints. But because at these scales one can 
benefit from hydrostatic and quasi-geostrophic 
balance to some extent, and if we add surface 
stations, the actual number of constraints on 
atmospheric fields probably approached 20000. 
Hence, the number of constraints obtained by a radar  



 
FIG. 4. a) Spectral decomposition of 50-kPa 
geopotential height (black), 50-kPa meridional wind 
(green), 92.5-kPa temperature (red) and 92.5-kPa 
specific humidity (blue) along lines of constant latitude 
and averaged over 25°-50°N in June and July 2018 
for the analysis of the control member of the ECMWF 
ensemble system. Except at small scales, curves for 
control members of other global ensemble systems 
are very similar. b) Ratio of 1) the average spectral 
decomposition of differences between control 
members, and of 2) the average spectral 
decomposition of the ECMWF control, for the same 
atmospheric properties as in a). Ratios of 0 imply that 
the two control members considered are identical at 
that scale while ratios of 1 arise when the magnitude 
of control-to-control differences are comparable to 
that of the patterns in the ECMWF control. For each 
of the four properties listed above, four curves 
illustrate the relative difference between ECMWF 
controls and those of four other centers: The 
Environment and Climate Change Canada (ECCC, 
spaced dotted lines), the Japanese Meteorological 
Agency (JMA, tightly dotted lines), the National 
Center for Environmental Prediction (NCEP, solid 
line), and the UK Meteorological Office (UKMO, 
dashed lines). For all considered properties and 
analysis pairs, considerable inconsistencies exist at 
scales below 500 km, much larger than the resolution 
of all the models considered. 
 

TABLE 1. Measurements of any atmospheric variable 
per hour over a 10×10 km area comparable to the 
size of a convective cell. For this exercise, a typical 
surface station reports information for five variables 
(pressure, temperature, dew point, winds, and 
precipitation). 

Data source Number of observations 

Upper air observation of any 

variable using planes, 

radiosondes, GNSS 

receivers, etc. 

≈ 0−10 (0−8 about 

thermodynamics) 

Surface observations of any 

variable 

≈ 0−10 (0−4 about 

thermodynamics) 

Geostationary satellite (per 

thermal IR channel) 

≈ 1,200 (largely from 

cloud top up) 

Radar reflectivity ≈ 25,000  

Radial velocity (assuming 

60% echo coverage in 

storms) 

≈ 15,000 in storms, 0 in 

no echo areas 

 
on a convective cell is of the same order of magnitude 
as what was available in the 1980s to forecast 
synoptic-scale systems. There are however two key 
differences: First, while the data from radiosonde 
covered most key dynamic and thermodynamic fields, 
the data from radar are largely limited to precipitation 
and one wind component. Second, outside of stormy 
areas, the information provided by radar largely 
collapses to “no measurable echo”. 
 An interesting sidebar is that in the 1980s, with 
the data provided by radiosondes, one could usefully 
forecast synoptic-scale storms over a period of five 
days, which roughly corresponds to the lifetime of the 
event itself. If the same logic applies for 
thunderstorms, one can at best reasonably hope to 
forecast the outcome of 10-km scale structures like 
convective cells for about their one-hour lifetime (see 
Fig. 9 of Sun et al. 2014) with the data that are 
currently available. This sets a sobering limit to what 
could ultimately be achieved with storm forecasting 
without additional data constraints. 
 
3.3 Operationally-Available Radar Data 

 
3.3.1 THE INFORMATION FROM REFLECTIVITY 

 
Let us now focus on the nature of the information 

provided by radar, starting with reflectivity. The 
intensity of the radar echo at traditional surveillance 
radar wavelengths is mainly dictated by the number 
and size of the largest hydrometeors, as reflectivity 
largely depends on the sixth moment of the 
hydrometeor size distribution (e.g., H � I J	K�KL  in 
rain). Radars have a range-dependent minimum 
sensitivity below which “no measurable echo” is 
reported. In the absence of significant beam blockage 
or attenuation, that threshold is such that most ice 
clouds and precipitation are observed, but liquid 
clouds are not. Reflectivity, or the sixth moment of the 
drop size distribution, is generally not a modeled 
quantity; to simulate their measurements from model 
state variables such as the mixing ratio of different 
hydrometeors, some assumptions must be made by  



 
FIG. 5. Composite of reflectivity from Canadian and 
US radars on a late spring afternoon on which are 
overlaid black contours of sea-level pressure, red 
contours of constant 50-kPa heights and purple 
contours of constant 100-50 kPa thicknesses. 
Contrast the spottiness of reflectivity compared to the 
smoothness of pressure, reflecting the strong 
variability at small scales and the weak variability at 
large scales of precipitation fields. Image courtesy of 
the Canadian Meteorological Centre (CMC) and of 
meteocentre.com. 
 
the assimilation system. Such assumptions being 
imperfect, the resulting error is generally correlated in 
space and time (e.g., Fig. 1c of Lee et al. 2007) and 
must be included in the error of the observational 
term. These correlated errors will generally dwarf 
accepted measurement errors (Keeler and Ellis 2000) 
unless the radar is not properly calibrated. In addition, 
only reflectivity measurements arising from 
hydrometeors should be assimilated, and 
contamination caused by ground, biological, or other 
echoes should be removed prior to assimilation. 

More important is the spatial and intensity 
structures of the precipitation field sampled by radar 
reflectivity measurements. Meteorologically, 
precipitation is an intermittent double-threshold 
process: first, clouds occur primarily in updrafts when 
saturation is reached; then, precipitation grows only 
when enough clouds are present. As a result, it is 
sparse, covering only a few percent of the United 
States on average in summer, and also much more 
structured at small scales than other atmospheric 
fields (Fig. 5). The consequences of the unusual 
topology of precipitation fields on assimilation will be 
examined in Section 3. The relatively high structure of 
precipitation at small scales combined with the lower 
quality of background information at scales below 500 
km (Fig. 4) cause precipitation background errors to 
be generally larger in magnitude and have shorter 
correlation distances than those of other fields. 

In addition, radar cannot accurately measure 
reflectivity under some circumstances, particularly 
when echoes from hydrometeors are too weak or 
contaminated by other echoes. In such situations, “no 
measurable weather echo” is generally reported. We 
often take a shortcut and assume that this means 
“zero reflectivity”. Complications arise when we 

assimilate logarithmic reflectivity (dBZ), as a value of 
minus infinity ensues. Since −∞ cannot be used 
numerically, this problem is solved by setting all 
reflectivity values below a certain threshold to an 
arbitrary value such as 5 or 10 dBZ (e.g., Tong and 
Xue 2005; Gastaldo et al. 2018). This choice also 
conveniently eliminates many weak non-
meteorological echoes. Ignoring for now the 
consequences of this choice, one should realize that 
fundamentally, the information being reported by 
radar is not “zero reflectivity”, but instead “reflectivity 
is below a threshold”. In the absence of attenuation or 
beam blockage, that threshold Zmin simply depends on 
radar characteristics and range. For example, on 
WSR-88Ds in precipitation mode, it is 
approximately 20log10(r) – 40 dBZ, where r is the 
range to the target in kilometers. Sometimes, echoes 
were present but then suppressed because they were 
deemed to be primarily from non-weather targets 
such as insects or the surface. In that case, all we 
know is that any possible weather echo is much less 
intense than that of the contaminating echo. These 
two examples illustrate the lack of specificity of the 
“reflectivity is below a threshold” information and how 
it does not equate “zero reflectivity”. 
 
3.3.2 REFLECTIVITY UNITS AND VALUES 

 
Radars are generally able to detect equivalent 

reflectivity factors Ze ranging from less than 0.1 to 
more than 10,000,000 mm6/m3. For a variety of 
largely historical technical and practical reasons, 
logarithmic or decibel units (dBZ, or 10×log10(Ze)) are 
generally used to archive and display reflectivity 
values. In addition, the distribution of reflectivity 
values from precipitation is unusual (top of Fig. 6): 
while, at any given height, most atmospheric fields 
generally have a quasi-symmetric distribution around 
an average, precipitation intensity and its radar 
reflectivity have distributions that follow more closely 
exponentials with a delta-function added at zero 
precipitation. In that context, using dBZ values for 
reflectivity has a potentially interesting property: the 
distribution of 10×log10(Ze) values is closer to a 
normal distribution (bottom of Fig. 6), and so, it is 
hoped, would the distribution of their errors. For all 
these reasons, reflectivity values in dBZ units are 
generally assimilated. The wisdom behind this choice 
will be examined in Section 6.a.1. 
 
3.3.3 THE “MEAN” DOPPLER VELOCITY INFORMATION 

 
The mean Doppler velocity estimates the radial 

component of target velocity toward or away from the 
radar. Its measurement is only available in the 
presence of echoes. In many ways, it is easier to 
assimilate than reflectivity as it does not suffer from 
calibration or attenuation bias and it is more directly 
related to model state variables. It is also the only 
direct constraint obtained concerning storm dynamics. 
Consequently, most researchers find that radial 
velocity assimilation help improve forecasts, and 
Doppler data are assimilated by many operational 
centers (Gustafsson et al. 2018). 



 
FIG. 6. Time series of reflectivity at one location from a 
rain event plotted using (top) a linear reflectivity scale 
and (bottom) a logarithmic reflectivity scale. On the 
right, the associated histograms of occurrence of 
different reflectivity are plotted sideways to match the 
reflectivity values on the left of the plot. Histograms of 
reflectivity generally resemble exponentials, while 
those of logarithm of reflectivity look more like normal 
distributions to which are added a second peak for 
reflectivity values corresponding to “no echo” 
(adapted from Fabry 2015). 
 

 
FIG. 7. Mean Doppler velocity measured by a radar as 
a function of Nyquist velocity when 75% of the 
received echo power comes with a radial velocity v 
and 25% with a radial velocity –v. While, using 
common sense and all currently-used observation 
operators, one would expect a measurement of v/2, 
this is not what standard radar signal processing 
algorithms such as pulse pair or Fourier transform “on 
a circle” (Keeler and Passarelli 1990) return as result. 
Note that the Nyquist velocity considered here is the 
raw one from a single pulse repetition frequency 
(PRF), not the combined value arising from the use of 
multiple PRFs. 
 

Doppler velocity assimilation is however not free 
of problems. Target velocity is largely wind velocity 
plus fall velocity which can be significant for rain. It 
can be contaminated by surface clutter, birds, and 
insects, though this contamination is diminishing with 
improved radar signal processing. Under some 
circumstances, it can be aliased. Lesser known is that 
the signal processing algorithms estimating mean 
Doppler velocity are biased when the distribution of 
radial velocities is non-symmetric (e.g., Fig. 7, (4.5) of 
Zrnic 1979). And while perfect operators such as Eq. 
(9) of Fabry (2010) can handle these situations, they 
are too complicated to be usable. This leads to errors 
correlated in space and results in artificial 
convergence or divergence patterns as the slowly 
elevating beam gradually traverses regions of vertical 
wind shear. 
 
3.3.4 DUAL-POLARIZATION INFORMATION 

 
The increasing availability of dual-polarization 

radars is stimulating research on the assimilation of 
their data (Li et al. 2017; Augros et al. 2018; and 
references therein). Dual-polarization parameters 
such as specific differential phase KDP, differential 
reflectivity ZDR, and co-polar correlation coefficient ρHV 
provide constraints on precipitation mass, mean 
target shape and its variability. Measurements or 
retrieved properties can then be assimilated to 
improve precipitation simulation. While some benefits 
are observed in rain, the unknown and complex 
relationship between model-simulated properties such 
as hydrometeor type, number, and mixing ratio, and 
radar observations in ice remains an obstacle (e.g., 
Posselt et al. 2015). 
 
3.4 Summarizing the Assimilation Context 

 
 Compared with many other measurements, radar 
data are more challenging to interpret: Reflectivity is a 
measure of higher moments of the hydrometeor size 
distribution than are generally modeled numerically; 
its estimate for weak and contaminated values is poor 
and ambiguous to interpret; Doppler velocity can be 
biased; polarization signals are weak and difficult to 
simulate; last but not least, the errors on 
measurements and their simulation are not well 
quantified and their spatiotemporal correlation not well 
known. By themselves, these issues would make 
radar data assimilation difficult. But they are probably 
minor compared to what follows. 
 
4. ARISING ISSUES WITH ASSIMILATION 

 
4.1 Relevance of the Measured Information 

 
Radar has become a valued operational 

instrument for weather surveillance thanks to its ability 
to characterize storms and monitor their impacts. 
Therefore, we naturally think that its data should be 
equally skillful at helping us forecast these storms 
numerically. But radar is much better at detecting the 
threats of storms than at inferring their causes. In fact, 
radars detect precipitating cells relatively late in their 
life cycle. Consider the textbook evolution of 



convective cells: Storms begin thanks to the 
combination of environment conditions that provide its 
fuel (temperature and humidity profiles), and a forcing 
mechanism that breaks the capping inversion 
preventing the storm to form earlier (e.g., via low-level 
convergence). Except sometimes for the forcing 
mechanism itself, radar is largely blind to these 
environmental conditions. As the unstable air parcel 
accelerates upwards, clouds form rapidly. But again, 
radar is largely blind to water clouds. Only when 
coalescence or ice crystal growth is significant 
enough do echoes appear aloft as illustrated by first 
echo studies (e.g., Knight et al. 1983) and numerical 
modeling of storms cells (e.g., Fig. 2 of Murakami 
1990). By that time, the storm is well underway, and 
precipitation starts very quickly. It is at the latter 
stages of storm evolution that radar provides its best 
information. Unfortunately, this does not give us much 
time to use radar information to make a valuable 
numerical forecast for that cell. Note that the late 
appearance of precipitation during the release of an 
atmospheric instability is not limited to convective 
processes but is also the case for baroclinic systems. 

We can complement the time-evolution view 
above with information obtained by considering 
atmospheric evolution in a process-oriented context. 
The box-and-arrow diagram in Fig. 8 illustrates the 
many interactions between different atmospheric 
properties relevant at weather timescales. Radars 
measure precipitation properties, and one component 
of the 3D wind where echoes are available. But the 

main driving force of storm dynamics is the pressure 
gradient arising from temperature and/or density 
contrasts, while the main control on storm intensity is 
low-level temperature and humidity. And though the 
dynamical and thermodynamic components of 
atmospheric motion are tightly coupled (top of Fig. 8), 
the water cycle largely follows one large loop whose 
last atmospheric component is precipitation (bottom of 
Fig. 8). In fact, the property best constrained by radar 
measurements, precipitation, 1) is the furthest from 
storm drivers, and 2) is short-lived without support, 
reducing its interactions with other fields. Indeed, if 
precipitation is modified in a model analysis and 
nothing else, that precipitation will fall out quickly 
without having had much time to influence the 
evolution of other atmospheric properties except 
through drag and evaporation. Only if assimilation 
properly changes the fields that cause precipitation 
may it have a lasting positive effect. 

This discussion illustrates two additional 
challenges of radar data assimilation at convective 
scales: Direct information on storm properties arrive 
late in the time evolution of storms, and the 
atmospheric fields well measured by radar are 
remotely connected with those that shape the 
evolution of present and future events. We must 
hence largely rely on indirect information, namely 
what can current storm characteristics tell us about 
storm drivers in the past, and what can we infer from 
them concerning storm drivers in the future. 

 

 
 
FIG. 8. System diagram illustrating critical interactions between different properties of an evolving atmosphere for time 
scales relevant to weather forecasting. Two interacting subsystems can be identified: The dynamics subsystems 
(largely in the top of the diagram) where interactions occur continuously largely through differential equations, and the 
water cycle (largely in the bottom of the diagram) where interactions tend to be more episodic. Highlighted elements 
contrast the initial drivers of storm evolution (in yellow) with properties constrained by radar (in cyan). Some 
properties arising from atmospheric interactions are also listed on the bottom right. 



4.2 Radar Innovation Sparseness 
 
 This is where the nature of the precipitation 

field causes challenges. Over most of the 
troposphere, precipitation is zero (e.g., Fig. 5). This 
fact is generally well reproduced by models. In fact, 
for much of the model grid-space, the background 
and the measurements agree perfectly that echoes 
are absent. Radar data hence provide no innovation 
in these areas, and there is no reason to modify the 
background. Observations will induce an innovation 
only when they disagree with the background, and 
this occurs only in clustered areas where either the 
background or observations have precipitation. This 
limits the spatial extent of innovations introduced by 
the assimilation of radar data. More importantly, it 
leaves large regions unconstrained by radar 
measurements, including many that will play 
important roles in the future evolution of weather 
events.  

Consider the tornadic supercell storm in the 
rounded rectangle in Fig. 9a that struck Tuscaloosa 
AL in 2011. It is a perfect example of the type of 
events we want to forecast well in advance, say with a 
lead-time of an hour. To forecast such a storm, we 
need to know the inflow that will provide its heat and 
moisture (identified as the colored letters A and B in 
Fig. 9b). We also need to know the properties of the 
air that will make up the surrounding environment and 
feed its downdrafts (colored letters C to E). An hour 
before, where is that air? It is in the areas bounding 
the white letters in Fig. 9b. Most of those are devoid 
of radar echoes; therefore, radar cannot obtain much 
information about them, at least directly. Note that in 
this case these areas are also covered by high-level 
clouds, limiting any help that could come from 
spaceborne imagers. 
 Therefore, to improve forecasts, it is critical for the 
available information to be projected from innovative 
precipitating areas out to other regions devoid of new 
constraints. While the need to project information 
outward is always present in data assimilation, it is 
surprisingly strong for radar data, given that data 
density should not be an issue: While data density is 
indeed high, because of the clustered nature of 
precipitation areas, there are huge regions where 
radar measurements do not directly innovate the 
background state. We have also seen that there are 
significant errors at scales up to hundreds of 
kilometers (Fig. 4) and gaps between precipitation 
areas comparable or exceeding such distances (Fig. 
5). It is therefore imperative for assimilation systems 
to project information up to hundreds of kilometers 
outward to help improve forecasts of a few hours. In 
Fig. 9 for example, if information obtained from the 
supercells cannot reach the areas labelled with a 
white A and B, radar data assimilation cannot be used 
to improve our knowledge of the properties of the air 
that will feed the supercell updraft in an hour, which 
severely limits possible forecast improvement. If we 
want to improve forecasts beyond one hour, 
information must be projected even farther. And, at 
this time (Table 1), radar data is largely the 
information that must be used for that task. 

 
FIG. 9. Example illustrating the limited amount of 
direct constraints from radar data on areas that will 
shape the evolution of severe events. a) Radar 
reflectivity image of a tornadic supercell storm at time 
T that we wanted to forecast at T−1 hr. b) Composite 
image of i) a conceptual diagram of a supercell storm 
at the position of the storm in a), and of ii) the 
reflectivity image at T−1 hr. On the diagram courtesy 
of Markowski and Richardson (2010), key areas are 
labelled by colored letters. The air in these areas at 
time T originates at T−1 hr from the colored rectangle 
areas with corresponding white labels. Most of these 
are in echo-free regions; as a result, the properties of 
the air in these source areas are unlikely to be directly 
constrained by radar measurements. 
 
4.3 Obstacles to Information Propagation 

 
 The uncertainty on state variables far away from 
storms can only be reduced if we can devise 
relationships between values or errors of 
characteristics of radar echoes (reflectivity, radial 
velocity, etc.) and values or errors of atmospheric 
properties well outside echo regions. Usually, these 
relationships are based on the covariance between 
errors in observational constraints and errors in state 
variables. To be useful for assimilation, these 
relationships must first exist, either physically or 
statistically,  and  they  must  also  either  be  known a 



 
FIG. 10. Average correlation between simulated reflectivity measurements from the ensemble generated by Jacques 
and Zawadzki (2015) and nearby background state variables of rain mixing ratio qrain, cloud mixing ratio qcloud, water 
vapor mixing ratio qvapor, temperature T, and vertical velocity w in the upper troposphere (top row) and the lower 
boundary layer (bottom row). In all cases, limited correlation is observed beyond a few kilometers. And while 
reflectivity measurements in the upper troposphere (here at eta-level η of 0.41) can provide some information on 
upper troposphere state variables (η=0.35), those in the boundary layer (η=0.98) are not as skillful at constraining 
boundary-layer state variables (η=0.98). For this calculation, all reflectivity measurements below 10 dBZ were set to 5 
dBZ, and at least one member had to have a reflectivity greater than 10 dBZ for the resulting correlation matrix to be 
included in our calculation. 

priori (like in 3DVar) or determined based on available 
information (like in ensemble-based approaches). 

Unfortunately, precipitation 1) is a delayed 
outcome of its root causes (Section 4.1) and 2) has 
smaller-scale errors than other fields (Section 3.3.1), 
both complicating the relationship between 
precipitation intensity and other atmospheric 
properties locally and at larger distances. As a result, 
the correlation between errors on point precipitation 
values and on other properties is on average weak 
(Fig. 10). This is particularly the case at low levels 
where, by the time the rainfall arrives, the dynamical 
processes that led to its creation occurred a long time 
ago. Nonetheless, the correlation (ρ) between 
observed quantities and state variables must be 
strongly positive or strongly negative for effective 
error reduction: Given a perfect observation, the error 
on the correlated state variable will be reduced by a 

fraction C1 + N1 + O�D ((A5) of Jacques et al. 2018). 

As such, correlations of 0.2, 0.4, 0.6, and 0.8 will then 
respectively lead to an error reduction of only 2%, 8%, 
20%, and 40%. If observations have errors, the 
resulting innovations and error reduction will be even 
smaller. Since high correlations between precipitation 
and other state variables are rare, especially at longer 
distances (Fig. 10), greatly reducing errors on other 
state variables by assimilating precipitation is difficult. 

While the theory of using error covariances to 
reduce the uncertainty in initial conditions is sound, it 
is only truly effective if error correlations are high. In 
the atmosphere, this occurs primarily when errors are 
small enough to grow linearly and when higher-order 

error terms or unexpected instabilities have minor 
consequences. However, in precipitation in general, 
and particularly in convection, instabilities play key 
roles. In fact, precipitation largely arises as a delayed 
response from atmospheric instabilities, whether 
baroclinic, convective, or otherwise. Since radar 
largely provides information on precipitating areas, 
that information will hence generally be concentrated 
in areas where instabilities are being or have just 
been released. A resulting challenge is that while 
background errors might have been small and 
Gaussian-distributed before the triggering of the 
instability, this is no longer the case by the time one 
detects a significant difference between simulated 
and real radar measurements. Outside of these 
areas, radar generally only reports the absence of 
precipitation. 

This has a few consequences that affect the 
potential performance of radar data assimilation 
positively and negatively: 1) Radar provides most of 
its information in regions where more constraints are 
badly needed to document the rapid evolution of the 
atmospheric state arising from an unfolding instability; 
2) The very nature of the rapidly-evolving atmosphere 
in unstable regimes makes any information more 
difficult to use, especially if that information is limited 
to a small subset of atmospheric properties as is the 
case for radar; 3) Contrary to most other data 
sources, radar provides little information in more 
stable atmospheric regimes where error reduction 
could be easier to achieve with incomplete 
constraints; 4) The exception to the above is when a 



radar observation of no significant echo invalidates an 
instability release in a model. Indeed, many 
researchers find that suppressing model precipitation 
where it does not occur contributes significantly to the 
skill of radar data assimilation (section 2c of Wattrelot 
et al. 2014 and references therein). 
 
4.4 Resulting Forecast 
 

 What will then happen when radar data are 
assimilated? While observed fields such as 
precipitation and one wind component will be 
significantly corrected in the analysis, key unobserved 
fields such as temperature and humidity will only be 
marginally updated from the background, and only in 
or very close to precipitating areas. The storm 
dynamics and thermodynamics will hence be largely 
incompatible with the updated precipitation field. 
When the forecasting model will then be run, after 
some time, the modified precipitation will have fallen 
and be replaced by one compatible with other fields; 
the precipitation will then largely resemble that of the 
background. The model will then appear to have 
forgotten the assimilated data and returned to a 
trajectory somewhat resembling the one prior to 
assimilation. 

This problem goes beyond the ability to forecast 
properly a storm in the “distant” future. For example, 
let us consider what happens when assimilating 
observations of a burgeoning cell in a background 
that lacks such convection but that is otherwise ripe 
for it. The intimidating Fig. 11 contrasts the evolution 
of a model cell in a WRF nature run with that of an 
identical twin model run from one member of a fifty-
member ensemble driven by assimilating reflectivity 
data in an Ensemble Adjustment Kalman filter (EAKF) 
framework using the Data Assimilation Research 
Testbed (DART, Anderson et al. 2009). Focusing first 
on the nature run, we observe that the growing cell is 
driven by boundary-layer convergence that feeds a 
growing updraft, saturates air, and generates 
increasing amounts of precipitation increasingly 
higher as time progresses. The modeled cell behaves 
differently: While, at every time step, precipitation is 
reasonably well corrected by reflectivity data 
assimilation, changes in dynamical and 
thermodynamic properties are insufficient in the 
bottom half of the troposphere. One reason for winds 
is that, especially at low levels, heavier precipitation 
can be associated with stronger updrafts early in the 
cell’s lifecycle, or stronger downdrafts late, as a result

 

 
FIG. 11. Comparison of the time sequence of a “real” growing cell (the nature run of an identical twin experiment) with 
that of the same cell whose evolution is driven by assimilating reflectivity “data” from the nature run. Each frame 
represents an east-west cross-section of precipitation mass in color and of zonal (u) and vertical (w) winds as 
vectors, on which are superposed contours of 85% and 100% relative humidity in cyan. Block arrows illustrate the 
progression of time on the nature run row and that of the assimilation and modeling cycles in the two bottom rows. 
While precipitation mass is relatively well assimilated at every step, changes in winds and humidity, among others, 
are generally insufficient in the bottom half of the troposphere. As a result, the modeled cell is anemic and does not 
evolve like the real one. Model runs are from Sodhi and Fabry (2020) and the assimilation is based on EAKF under 
DART and done with reflectivity data at nine levels every 1 km horizontally with a 3-km localization window. 



of which limited net covariance exists between 
precipitation and updrafts if members have both 
growing and mature cells. At higher levels, 
precipitation and updrafts are generally collocated, 
hence assimilation performs better there. Another 
reason for humidity is that many precipitation 
intensities are associated with relative humidity near 
100% (e.g., P,	 ≈ P,�����3�R��S � 		1 + P,�����3�R��S��1 +
�TU	+VP��, A being an arbitrary positive “constant”). 
When a linear relationship between errors in R and in 
RH is derived by the assimilation system, it leads to 
under-correction in RH in weak precipitation and over-
correction in strong precipitation. As a result of these 
two non-linear relationships, 1) the lower-level 
updrafts (up to T+15 min) and downdrafts (T+20 min) 
in the precipitation core are not well captured, and 2) 
the air is generally not saturated with humidity where 
precipitation is added at the top of the core except at 
T+20 min. Hence, when the model runs, evaporation 
suppresses the already-weak updraft and 
precipitation fails to grow sufficiently. In the end, the 
modeled cell does not flow or generate precipitation, 
sensible and latent heat like the real cell, which is why 
it cannot evolve in the same way. It will also be 
unable to correctly interact with neighboring storms. 

Reflecting on the analyses in this section, we 
surmise that, at its root, the rapid skill loss observed 
in precipitation after radar data assimilation (Fig. 1) 
stems from the inability of assimilation systems to 
correct unobserved fields, including those away from 
storms. This arises from the fact that radar primarily 
takes measurements in precipitation, a clustered field 
with large areas of zero value and that arises from 
atmospheric instabilities where errors are large, have 
limited spatial correlation, and have nonlinear 
relationships with other state variables that will 
ultimately dictate its future evolution. 
 
5. COMPOUNDING PROBLEMS 

 

 Furthermore, we should not forget additional 
difficulties linked with the field of precipitation, its 
sampling with radar, and its modeling. 
 
5.1 The Lack of Large-Scale Variability of Rainfall 
 

As illustrated in Fig. 5, compared to other 
atmospheric fields, rainfall has considerably more 
small-scale variability. As a result, the errors in 
forecasted rainfall will also be smaller-scale errors. 
Because such forecasts are used as background 
fields by assimilation systems, an additional obstacle 
arise: The successful modeling of rainfall relies on the 
ability of models to simulate detailed smaller-scale 
processes, something they often do poorly because of 
limited resolution and microphysics. The lack of 
effective model resolution limits the model’s ability to 
simulate what can be observed and hence the benefit 
of innovation from observations. A case could be 
made that since models cannot simulate the finest-
scale processes of precipitation shaping what radars 
measure, perhaps we should not assimilate 
measurements at the highest available resolution. 
Figuring out what better observational constraint to 

provide should increase the effectiveness of radar 
data assimilation. 
 
5.2 Radar-Measured vs. Modelled Properties 
 

 Radar measures beam- and range-weighted 
reflectivity, a property linked with the sixth moment of 
precipitation. In echo areas, it also measures other 
properties with beam, range, and reflectivity 
weighting. Models simulate a few moments of 
precipitation on a grid, but generally not the sixth. In 
the process of simulating radar observations, the 
assimilation system must convert the moments 
simulated by models into reflectivity, a process not 
unlike what radar meteorologists do when converting 
reflectivity to rainfall rate using Z-R relationships. It 
must also do so accounting for the geometry of radar 
measurements. Since neither calculations are done 
perfectly, errors that are correlated in space will 
result. For example, the same microphysical 
processes that cause drops to be unusually large or 
small at one location also act in nearby areas. In the 
70 years we have had Z-R relationships, we have not 
definitely characterized the statistical properties of 
their error, especially their spatial error covariance. 
This must now be achieved to help data assimilation 
(DA). 
 Additionally, assimilation approaches are based 
on the hypothesis that data are not biased. Calibrated 
data everywhere are hence a necessity, and so are 
unbiased observation simulations. 
 
5.3 The National Nature of Radar and DA Work 
 

Lastly, each radar system is a unique instrument 
with unique quirks. Some homogeneity exists within 
each country, but despite standardization efforts, it is 
difficult to keep track of peculiarities in the hardware, 
operation, and data processing of radars from each 
nation. These also evolve: At the time of this writing, 
in the US, version 18.2 of the radar data processing 
system is being used, the first dating circa 1990. And 
each time a new processing system is being used, the 
accuracy, biases, and usability of radar data may 
change. And all radar data assimilation efforts must 
be duplicated in every country and adapted to each 
assimilation system. 
 
6. HOW TO CONFRONT THESE DIFFICULTIES? 

 
Radar data assimilation is difficult and prone to 

failure for a multitude of reasons summarized in Table 
2. But, for the foreseeable future, it will largely remain 
all that we have to enable the use of NWP for storm 
warnings. We must therefore try to make the best of a 
difficult situation. Doing so requires confronting the 
challenges specific to radar data assimilation, 
recognizing that unique problems may require unique 
solutions. 

While the picture we painted until now may look 
bleak, we do not believe that the situation is hopeless. 
For example, many numerical experiments such as 
Crook (1996) show how small changes in 
environmental humidity or temperature lead to large 



TABLE 2. Conditions of success and possible causes of failure of radar data assimilation. 

Conditions of success of data assimilation Some radar-specific challenges 

Observability condition: The analysis or its error will 

differ from the background or its error if 

measurements add value to the simulated 

observations from the background 

1) Operational radars measure a limited number of 

properties; 2) over most of the model domain, 

observations provide no new information given the 

absence of both real and simulated echoes 

Reproducibility condition: The model must have the 

variables, physics, and resolution needed to 

1) generate the real current atmospheric state and 

2) simulate accurately the physics of the 

measurement process 

1) The small-scale processes that shape rainfall and its 

reflectivity are often not resolvable; 2) accurate 

observation simulation is too complex or impossible 

given the available information (e.g., most model 

microphysics do not have the information needed to 

compute reflectivity correctly) 

Error characterization condition: Observations and 

their simulation must be statistically unbiased, and 

their error covariance must be known 

Radar measurements contain artifacts and have poorly-

characterized correlated errors; simplistic observations 

simulation also introduce undetermined correlated errors 

Usability condition: The assimilation system must be 

able to use the observation-background mismatch to 

efficiently adjust the model state at the grid-point 

where the observation occurred 

Imperfect relationship between errors in radar 

reflectivity (especially in dBZ values) and in related 

state variables such as precipitation mixing ratio 

Propagability condition: Innovations in observations 

can be propagated to state variables at other locations 

if usable relationships between them exist and are 

known to or determinable by the assimilation system 

Convective patterns have primarily small-scale 

variability and their error covariance with other state 

variables is limited, especially at larger distances and in 

the context of large background errors 

Relevance condition: Changed fields must play a 

significant role in the future evolution of the weather 

patterns of interest for forecasts to be improved 

Correcting precipitation has the least impact on the 

future outcome of storms; key fields such as temperature 

and humidity are harder to modify using radar data 
 

changes in precipitation and its patterns. Hence, one 
should be able to take advantage of that fact to 
improve our knowledge of the said temperature or 
humidity. We simply seem to fail to achieve this with 
current practices. In parallel, instabilities often evolve 
in expectable ways, and this could potentially be 
exploited. The challenge becomes finding new 
approaches that account for the strengths and 
limitations of radar data as well as the nature of the 
problems we face. Two key goals should be sought in 
priority: 1) Correcting fields far away from 
precipitation, and 2) Devising error-reduction methods 
that work well in the context of large and rapidly-
growing background uncertainty in atmospherically 
unstable regions. 

We do not know how to successfully face these 
challenges yet. What follows are a set of possible and 
complementary avenues of inquiry arising from the 
issues raised in the previous sections. Several ideas 
are explored, but the list is far from exhaustive, its 
purpose being primarily to stimulate reflection. 
 
6.1 Simpler Adjustments to Current Approaches 
 
6.1.1 TO DB OR NOT TO DB? MORE COMPLEX 

RELATIONSHIPS 

 
We mentioned in Section 3.3.2 why reflectivity 

measurements Z are generally assimilated in dBZ or 
log(Z) units. Because reflectivity and the precipitation 
rate R from any individual type of precipitation are 
closely linked through a power-law relationship, the 
previous statement is akin to saying that we are 
generally assimilating log(R)radar measurements from 

radar. Traditional assimilation systems then estimate 
or use a linear relationship between errors in 
log(R)bkgd in the background and those in state 
variables. Once the assimilation system has 
combined the log(R)bkgd and log(R)radar to determine a 
new log(R)anal for the analysis, the innovation 
[log(R)anal − log(R)bkgd] is then used to update state 
variables by [log(R)anal − log(R)bkgd]∆. Assimilating 
reflectivity in dBZ units hence leads to the following 
proportionality relationship: If an innovation a in log(R) 
is associated with a state change a∆, then an 
innovation b in log(R) should be associated with a 
state change b∆. 

In that case, the following example is assumed to 
be true: If a change in rainfall R from 1 mm/hr to 
10 mm/hr (log10(R) changing by 1) is associated with 
an increase in updraft velocity w of 0.3 m/s, then a 
change in R from 1 mm/hr to 100 mm/hr (log10(R) 
changing by 2) leads to an increase in w of 0.6 m/s. 
At face value, this is ridiculous. We know that, 
physically, the rate of water vapor condensation is 
proportional to w, and if clouds do not accumulate 
mass, rainfall must be linearly linked to the rate of 
condensation and hence to w. Changes in w are not 
linked to changes in log(R): While updrafts of 0-
0.1 m/s and 0.3-0.4 m/s would sustain rainfalls of 
1 mm/hr and 10 mm/hr respectively at steady state, 
an updraft of 0.6-0.7 m/s will not be sufficient for a 
100 mm/hr rainfall. Continuing this example, a rainfall 
of 0.1 mm/hr (log10(R) changing by −1) would then 
lead to a downdraft of 0.2-0.3 m/s, also an unlikely 
scenario. 

These inconsistencies arise because of the 
assumed linearity between increments in simulated 



 
FIG. 12. Average correlation between either rain mixing ratio (top row), simulated reflectivity measurements (middle 
row), and a flag of presence of echoes greater than 10 dBZ (bottom row) from the ensemble generated by Jacques 
and Zawadzki (2015) and nearby background state variables of rain mixing ratio qrain, cloud mixing ratio qcloud, water 
vapor mixing ratio qvapor, temperature T, and vertical velocity w in the upper troposphere. Shaded figure backgrounds 
highlight for which of the three radar-derived quantities we observe stronger correlation with each state variable. 

observations and increments in state variables. Here, 
because assimilated observations are proportional to 
log(R), this assumption leads to improbable results. 
Note that if errors were small, the non-linearity of the 
logarithm function would not matter. But since errors 
are often large, it becomes important. 

 We are not obliged to assimilate reflectivity 
as 10log[\	H�. We can take advantage of the fact that 

H Q �]^P
/_`, or also H Q �]ab����

/_c , to assimilate H[ /_`⁄  

or H[ /_c⁄ , quantities roughly proportional to the rainfall 
R and to the mixing ratio qrain respectively. This 
transformation would not be unprecedented, as 
satellite measurements are often assimilated using 
the transformed quantity brightness temperature TBB, 
and not as rawer measurements of radiances (e.g., 
Garand 2003). This is both for reasons of 
convenience, errors tending to be constant in TBB, and 
because it leads to near-linear relationships between 
innovations in TBB and innovations in wanted 
properties such as T. The main benefit of assimilating 
a quantity which is proportional to R or qrain would be 
its stronger link to other state variables whose errors 
we are desperately trying to reduce. 

However, we do not expected errors in all 
atmospheric properties to be better correlated with 

rainfall errors. Errors in humidity for example probably 
depend more on the presence of enough precipitation 
than on variations of its intensity. We can for example 
contrast the correlation between errors in state 
variables with errors in rain mass, in the logarithm of 
reflectivity, or in the presence of echoes greater than 
10 dBZ (Fig. 12). It confirms that for some state 
variables such as precipitation and updrafts, 
assimilation rain amounts would lead to better error 
reduction, while for vapor, assimilating the mere 
presence of echoes does as well as any richer 
quantity. What Fig. 12 illustrates is that using some 
physically-based reasoning, we can determine which 
relationship should perform better, and use it to our 
advantage. Here we have limited ourselves to three 
simple scenarios, but more could be explored. 
 
6.1.2 MEMBER RELEVANCE AND CONDITIONAL SELECTION 

 
The use of more complex relationships between 

errors in radar-measured quantities and in state 
variables is actually a timid response to a much more 
complex problem. Initial background errors are large 
(Fig. 4). Especially in the context of an atmosphere 
conditionally unstable for convection, these then grow 



 
FIG. 13. Illustration of the evolution of the phase state 
of ensemble members as a function of time as they 
experience the release of a convective instability at 
different times. At the annotated time of assimilation, 
some members (yellow to red) have not experienced 
the instability, while only a subset of them (in green) 
have precipitation. The task of the assimilation system 
is to devise a way to correct the model state from all 
those members using radar observations given a truth 
that may lie in any of the interval areas in the vertical. 
 
rapidly, destroying simple error relationships. Figure 
13 conceptually illustrates this process: It is not 
uncommon to have, for any specific region, members 
with no convection, some with growing convection, 
and some with mature convection. In the absence of 
echoes, no relationship is expected between echo 
strength and any state variable; in the growing stages 
of a cell, updrafts, cloudiness, and temperature 
positively correlate with echo strength, or more 
accurately with echo intensification; in the mature 
stage, the opposite occurs, stronger precipitation 
cores being associated with stronger downdrafts and 
cold pools. Under such circumstances, any attempt to 
find a single relationship, however sophisticated, 
between errors in echo strength and state variables is 
doomed: If the assimilation system tries to derive 
unique relationships applicable to all situations, the 
result will be an odd mixture of all of them. 
Consequently, error reduction is unlikely to be very 
effective. 

This discussion highlights the importance of 
meteorological context and how it affects the 
applicability of expected relationships between 
observed and unobserved quantities. Context can 
include meteorological relevance, such as whether 
the members are in the correct phase of the evolution 
of the cell. It can also be spatial, such as whether the 
pixel considered is at the center of the cell, ahead, or 
behind. 

A better approach may be to use simulated and 
real observations to determine the pertinent context, 
and then derive a more appropriate relationship 
accordingly. As a simple example, let us assume that 
we know from observations that the state variables to 
be corrected are in the middle of the precipitation 
core; we can hence repeat the computations done in 
Fig. 12 but only selecting members where a local 
reflectivity maximum is within 1 km of the point of 
interest. The result, shown in Fig. 14, shows that 
much higher error covariance can be achieved. This 
implies that relevant members could be better 
corrected. 

What this leaves out is what to do with the 
irrelevant members. For those, a very different type of 
error correction must be considered. In the past, 
these have included, among others, moving patterns 
around (e.g., Brewster 2003a,b; Stratman et al. 2018), 
or adding/suppressing surface heat and column 
moisture to create/suppress storms using ad-hoc 
processes (e.g., Wattrelot et al. 2014; de Lozar et al. 
2018). These and new approaches should be 
explored more thoroughly. 
 
6.1.3 LARGER-SCALE CORRECTIONS 

 
As seen previously, precipitation varies 

considerably at small scales, and proportionally less 
at larger scales than other fields (Fig. 5). As a result, 
errors in distant atmospheric properties are unlikely to 
be correlated with errors in point rainfall (Fig. 10): 
Errors in rainfall at any particular point are instead 
generally caused by storm displacement errors or 
morphological differences in the precipitation pattern. 
But if smaller-scale errors or patterns are filtered, 
error correlation increases (e.g., Fig. 15). This is 
partly because rapidly-evolving small scale patterns 
with large errors are suppressed, and slowly-evolving

 

 
FIG. 14. Average correlation between either rain mixing ratio or simulated reflectivity measurements from the 
ensemble generated by Jacques and Zawadzki (2015) and nearby background state variables of rain mixing ratio 
qrain, cloud mixing ratio qcloud, water vapor mixing ratio qvapor, temperature T, and vertical velocity w in the upper 
troposphere. As opposed to Fig. 10, average error correlations in excess of 0.6 can be observed for all these 
background variables. 



 

 
FIG. 15. Distribution of correlations at 1-km altitude 
between errors in rainfall and in vapor amounts 50 km 
to the east of the rain for the ensemble generated by 
Jacques and Zawadzki (2015). Correlations of 1×1-
km scale values are shown on the left, while those at 
50×50-km scale are shown on the right. As state 
variables and observations are smoothed, error 
correlation increases. 
 
larger-scale patterns with more linear errors can be 
revealed. Multi-scale approaches vary from 
smoothing background error covariances (e.g., 
Miyoshi and Kondo 2013; Caron and Buehner 2018) 
to smoothing observations (Sodhi and Fabry 2020). 
By effectively smoothing error patterns, both 
approaches allow the use of much larger localization 
windows that increase the projection of information. 
Here too, other ideas would be welcome. 
 

6.2 Diversifying Approaches 
 

The ideas proposed above can be implemented 
within traditional adjustment-based assimilation 
systems. But to better tackle the challenges posed by 
both limited information propagation and the large 
background errors, radically different approaches may 
have to be considered. We believe for example that 
the time evolution and the spatial structure of echo 
patterns are not well exploited in convective-scale 
assimilation, yet they could provide valuable 
information. When one only has synoptic point data, 
all one can rely on is error covariance. But when data 
are available everywhere and all the time, derived 
quantities can also be exploited such as the position 
and strength of key features (reflectivity cores, low-
level radial divergence, tropospheric-wide velocity 
couplets, etc.). In parallel, we should also better 
exploit additional radar and remote-sensed 
measurements to help better constrain storms as well 
as their environments. We believe that traditionally-
assimilated radar data do not provide enough variety 
of constraints to effectively reduce background errors. 

Perhaps should we also embrace the information 
provided by instability releases. The atmosphere is 
unpredictable because of instabilities, and 
precipitation generally occurs in the middle or final 
stages of the release of atmospheric instabilities. 
Paradoxically, we rarely have a better constraint on 
the state of the atmosphere than at the instant an 
instability is being triggered, as conditions for their 
triggering are often very specific. Therefore, the 
instability triggering event itself is a powerful piece of 

information if it could be intelligently taken advantage 
of. 

Then, to deal with large errors at the assimilation 
level, more heuristic methods may have to be 
explored. For example, Pérez Hortal et al. (2019) 
constructs analyses by selecting, for each vertical 
column in the model, the ensemble member whose 
areal precipitation is locally closest to the observed 
values. Variations on particle filters may also be 
possible, among others, to eliminate members whose 
errors become so large that their information 
becomes misleading. 

There is no magic bullet. Each success will only 
bring us a bit closer to victory. But a wise colleague of 
ours keeps repeating “I’ll take a few percent of 
something over 100% of nothing any day” (G. 
McCourt, 2010-2019, personal communication). It is 
only via considerable efforts that radar data 
assimilation can considerably help improving 
convective-scale NWP. 
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