Polarimetric radar measurements of a large-scale smoke plume from distant Canadian wildfires

Robert Schrom

1. NASA GSFC/USRA

Characterizing both shape and orientation distributions of particles in the atmosphere can be aided by polarimetric radar measurements. In the case of a roughly horizontally homogeneous distribution of particles, the azimuthal variability of the polarimetric radar measurements can also provide unique information about the particle shapes and orientation. A large smoke plume over the midwestern United States, originating from a series of wildfires in western Canada during August 2018, provides such a case. S-band polarimetric radar measurements intercepting this plume on 8 August 2018 show a clear azimuthal pattern of maxima and minima in the reflectivity (Z_H), differential reflectivity (Z_{DR}), differential phase (Φ_{DP}), and correlation coefficient (ρ_{HV}). The maxima in Z_{DR}, Z_H, and ρ_{HV} occur for the azimuthal angles roughly perpendicular to the wind flow, suggesting oriented prolate-like smoke particles within the plume. In addition, asymmetries in the azimuthal distribution of Φ_{DP} indicate that the simultaneously transmitted radiation exhibits unique depolarization signatures at different viewing angles, with the maximum depolarization occurring where Z_{DR} is maximized. These signatures suggest that the particles have a specific preferred orientation: their long axes are aligned roughly parallel to the wind, and they have a non-zero mean canting angle with respect to the surface. Potential applications of these measurements for charactering the smoke particle properties as well as applications to hydrometeor measurements are also discussed.

Keywords: polarimetric radar, smoke, depolarization