Estimation of shape parameter from C-band polarimetric radar measurements

*Aho ADACHI¹, Takahisa Kobayashi²,¹

1. MRI, 2. CRIEPI

Studies have been shown that the rainfall intensity can be estimated from polarimetric radar data with higher accuracy than that from conventional single polarization radar because the former contains information on the raindrop size distribution (DSD). Adachi et al. (2015) proposed a method to estimate three parameters (N_0, D_0, $μ$) of the DSD from polarimetric radar data assuming a modified gamma distribution, in which they assume that the shape parameter ($μ$) is constant in a range profile. However, this assumption may not be satisfied if the radar is sampling mixed convective/stratiform echoes that simultaneously exist in a single profile.

Theoretically, $μ$ can be estimated from $ρ_{HV}$. Indeed, Thurai et al. (2008) proposed a method to estimate $μ$ from $ρ_{HV}$ using a priori formula estimated from observations on the ground. However, in order to estimate $μ$ with that method, it is necessary to obtain $ρ_{HV}$ with quite high accuracy, and very long sampling time is needed to apply to radars to satisfy this condition (e.g., Illingworth et al. 1991). The MRI C-band polarimetric radar is equipped with solid-state transmitters, and observation data with high accuracy can be obtained in a relatively short time. On the other hand, C-band is expected to have temperature dependency on $ρ_{HV}$ measurements compared to radars operating at other frequencies. Therefore, simulations were performed for S, C, and X-bands to estimate $μ$ from $ρ_{HV}$, and the results for C-band was compared with actual data.

Keywords: polarimetric radar, raindrop size distribution, shape parameter