Dual polarization observations of precipitation have become ubiquitous. Observations from dual polarization radars are often difficult to use for the general community, who seldom have expertise in dual polarization radars. The observations from polarimetric radars are often not suitable for atmospheric cloud and precipitation process studies without additional processing. Additional processing transforms these observed variables into more meaningful geophysical parameters. The ARM program has deployed radars at C-band and X-band frequencies (at various fixed and mobile sites), motivated by demands for targeted improvements to quantitative precipitation estimates and process studies to support climate model forcing and model validation. As part of a Climate Model Validation and Development (CMDV-MCS) project, a set of radar products called Taranis were developed to augment current Atmospheric Radiation Measurement (ARM) measurements for the Midlatitude Continental Convective Clouds Experiment (MC3E) in support of several modeling efforts and based on the data collected by ARM C-band Scanning ARM Precipitation Radar (CSAPR) and X-band Scanning ARM Precipitation Radar (XSAPR) radars. This product suite includes corrections for calibration biases using dual-pol parameters, KDP estimation, attenuation correction in rain, hydrometeor identification, rainfall rates, and DSD parameter estimation. The products uniquely blend new algorithm developments with existing open-source tools and applications. This poster will discuss the Taranis radar product suite and its implementation, as well as show processing results for several ARM field campaigns including MC3E, Cloud Aerosol and Complex Terrain Interaction (CACTI), and the 2018 ARM Southern Great Plains (SGP) Summer XSAPR Intensive Observation Period (IOP).