Thunderstorm Identification Algorithm Research Based on Simulated Airborne Weather Radar Reflectivity Volume Scan Data

Xu Wang1,2, *Rui Liao1, Jianxin He1,2, Wanting Chen1

1. CUIT University, 2. Key Laboratory of Atmospheric Sounding of China Meteorological Administration

Airborne weather radar is an important part of the atmospheric detection system and an important guarantee for safe flight. However, unlike ground-based radars, most of the existing airborne weather radars do not have scanning capability. Even if a small part has scanning capability, it is very limited. The obtained meteorological echo information is insufficient by these radars. This paper proposes a kind of airborne weather radar with a new scanning strategy that adopts a volume scanning method. The radar scans a total of 31 elevations (resolution is 1 angle) from lowest to highest elevation in sequence in the fan-shaped area ahead of the flight, so that it can obtained enough echo information with high resolution. Firstly, by simulating the detection process during the flight, we establish a three-dimensional reflectivity volume scanning data simulation model based on X-band ground-based radar reflectivity data. And then, we use the simulated reflectivity data to study a thunderstorm identification algorithm. Among the existing thunderstorm identification algorithms, Storm Cell Identification (SCI) algorithm uses seven reflectivity thresholds to identify storm cells, which can reflect the three-dimensional structure of storm cells and obtain their attributes. Therefore, based on SCI algorithm and considering the severe attenuation of X-band and the life process of thunderstorm cells, this paper study a thunderstorm identification algorithm which makes progress on identifying thunderstorm cells in development stage. Finally, this paper gives a thunderstorm identification example to prove that this algorithm can not only identify thunderstorm cells in mature stage but also those in certain scale development stage by combining with images and attributes analysis, which is helpful for flight security and has important significance for future meteorological researches.

Keywords: airborne weather radar, volume scan, thunderstorm identification, SCI algorithm